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a b s t r a c t

Using the active control technique with Lyapunov stability theory and the Routh–Hur-

witz criteria, control functions are designed to achieve complete synchronization

between two identical F6 Van der Pol oscillators (F6-VDPOs), two identical F6 Duffing

oscillators (F6-DOs), and two non-identical F6 oscillators comprising F6-VDPO and

F6-DO for the triple-well configuration of the F6 potential. The coefficient matrix of the

error dynamics between each pair of synchronized systems is chosen such that the

number of active control functions reduces from two to one, thereby, significantly

reducing controller complexity in the design. The designed controllers enable the state

variables of the response system to synchronize with those of the drive system in both

the identical and non-identical cases. The results are validated using numerical

simulations.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the last two decades extensive studies have been done on the properties of nonlinear dynamical systems. One of the
most important properties of nonlinear dynamical systems is that of synchronization. For two n-dimensional chaotic
systems coupled in the drive–response configuration, the drive system [_x ¼ f ðx; yÞ] and the response system [_y ¼ gðx; yÞ],
where xðtÞ ¼ ðx1; x2; . . . ; xnÞ and yðtÞ ¼ ðy1; y2; . . . ; ynÞ are phase space or state variables, and f ¼ ðf 1; f 2; . . . ; f nÞ and
g ¼ ðg1; g2; . . . ; gnÞ are the corresponding nonlinear functions, synchronization in a direct sense implies jyiðtÞ �

xiðtÞjði¼1;2;...;nÞ ! 0 as t!1. When this occurs the two systems are said to be completely synchronized [1–3]. Generally
chaos synchronization can be considered as the design problem of a feedback law for full observer using the known
information of a plant, so as to ensure that the controlled receiver synchronizes with the transmitter [4]. Complete
synchronization (CS) of two chaotic systems was first achieved by Pecora and Carroll in 1990 using replacement method
[1]. Thereafter enormous research activities have been carried out in chaos control and synchronization by many
researchers from different disciplines. These research activities have, over the years, established other types of
synchronization such as sequential, phase, anticipated, measure, generalized, lag and projective synchronizations, as well
as other effective methods of chaos control and synchronization such as linear feedback, adaptive synchronization,
backstepping nonlinear control, sliding mode control, and active control [5,6] (and references therein). Outstanding among
the various methods of synchronization is the active control method introduced by Bai and Lonngren [7,8]. The active
control method is outstanding because its application is ubiquitous. It can be used to synchronize identical chaotic systems
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evolving from different initial conditions [7–10] (just to cite but a few), non-identical systems [6,11–16], and to anti-
synchronize both identical and non-identical systems [17–19].

The ubiquitous application of the active control technique has encouraged researchers to introduce active control
techniques based on different stability criteria. For instance, Lei et al. [20] introduced the active control based on the
Lyapunov stability theory and the Routh–Hurwitz criteria, which has the advantage of possible implementation, and it has
been used to synchronize a few chaotic systems [20–22]. However, the active control technique always gives rise to as
many control functions as is the dimension of the systems being synchronized, thereby, making the controllers complex
and unsuitable for practical implementation. In this paper the active control technique based on Lyapunov direct method
and the Routh–Hurwitz criteria is used to design controllers for the synchronization of two-dimensional (2-D) chaotic
systems in such a way that the number of active control functions reduced from two to one, thereby, reducing significantly
the controller complexity and hence cost, which makes practical implementation feasible.

Synchronization of two chaotic systems has potential applications in physical systems, lasers, plasma, circuits, chemical
reactor, ecological systems, biomedical systems, cardio respiratory interaction, brain activity of Parkinsonian patient,
paddlefish electro sensitive cell, solar activity, and secure communication [6,14] (and references therein). In secure
communication the drive and response systems serve as the transmitter and receiver respectively. The message is
embedded in the chaotic dynamics of the state variables of the transmitter via a mathematical function and is recovered at
the receiver via the inverse of the mathematical function when the drive and the response systems are synchronized
[23–26]. Secure communication is guaranteed if the dynamics of the drive system (transmitter) is complex [23–26]. In
[23,24,26] F2;F4 and F6 chaotic oscillators, respectively, have been synchronized via adaptive feedback approaches and
applied to secure communication. The F6 chaotic oscillators have more complex dynamics than their corresponding F4

and F2 chaotic oscillators [27–29] and hence offer more security of masked information during transmission. The
complexity is even higher when the F6 chaotic oscillators are non-identical due to model mismatches. Synchronization of
non-identical F6 chaotic oscillators is, therefore, interesting due to its potential application in highly secure
communications. Moreover, the synchronization behaviour of F6 chaotic oscillators, which have just been recently
introduced, has not been well investigated for the triple-well potential configuration in which their dynamics are more
complex.

Therefore, the aim of this paper is to design single active control functions based on Lyapunov stability theory and
Routh–Hurwitz criteria that can guarantee complete synchronization of identical and non-identical F6 chaotic oscillators
with external excitation in the triple-well configuration of the F6 potential. That is, controller complexity will be
significantly reduced by carrying out the design in such a way that only one active control function emerges, instead of the
normally two active control functions expected of a 2-D chaotic system.

The rest of the paper is organized as follows: the following section describes the Van der Pol and Duffing oscillators,
Sections 3 and 4, respectively, deal with the synchronization between two identical F6 Van der Pol oscillators and two
identical F6 Duffing oscillators evolving from different initial conditions; Section 5 deals with the synchronization between
F6 Van der Pol and F6 Duffing oscillators, while Section 6 concludes the paper.

2. Description of the models

The general form of the Van der Pol and Duffing oscillators models with external excitation are, respectively, given by
the second-order non-autonomous differential equations (1) and (2) as follows:

€x� mð1� x2Þ_xþ
dVðxÞ

dx
¼ f 1 cosðo1tÞ (1)

€xþ l_xþ
dVðxÞ

dx
¼ f 2 cosðo2tÞ (2)

where x is the state variable, dots over x denote derivative with respect to time t, m40 and l are damping parameters, f i

and wi, i ¼ 1;2 are, respectively, the amplitudes and angular frequencies of the external excitations, VðxÞ is the potential.
The Van der Pol oscillator model describes periodically self-excited oscillators in Physics, Engineering, Electronics, Biology,
Neurology and many other disciplines [27], while the Duffing oscillator model describes various physical, electrical,
mechanical, and engineering devices [28,29], for different potentials VðxÞ. The potentials VðxÞ are approximated by finite
Taylor series for the F2, F4 and F6 chaotic oscillators as in (3), (4) and (5) respectively.

VðxÞ ¼ 1
2ax2 (3)

VðxÞ ¼ 1
2ax2 þ 1

4bx4 (4)

VðxÞ ¼ 1
2ax2 þ 1

4bx4 þ 1
6dx6 (5)

where a; b and d are constant parameters of the potential. The potential (3) is single-well if a40. The potential (4) is
single-well if (a40;b40), double-well if (ao0;b40) or double-hump if (a40;bo0). The potential (5) is double-well if
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(ao0;b40; d40), double-hump (or unbounded single-well) if (a40;bo0; do0), triple-well (or bounded double-hump) if
(a40;bo0; d40) triple-hump (or unbounded double-well) if (ao0;b40; do0).

When the F2 potential (3) is substituted into (1) the result gives the Van der Pol oscillator.

€x� mð1� x2Þ_xþ ax ¼ f 1 coso1t (6)

However, substituting the F2 (3) into (2) gives a linear equation which does not exhibit chaotic dynamics. Now,
substituting the F4 potential (4) into (1) and (2) we, respectively, have the Duffing–Van der Pol oscillator (7) and the
Duffing oscillator (8) as follows:

€x� mð1� x2Þ_xþ a1xþ b1x3 ¼ f 1 coso1t (7)

€xþ l_xþ a2xþ b2x3 ¼ f 2 coso2t (8)

where the subscripts 1 and 2 on the constant parameters indicate that the parameters, in general, take different values for
the chaotic dynamics of the Van der Pol and Duffing oscillators respectively.

Finally, substituting the F6 potential (5) into (1) and (2) we, respectively, obtain the F6 Van der Pol (or extended
Duffing–Van der Pol) oscillator (9) and the F6 Duffing (or extended Duffing) oscillator (10) as follows:

€x� mð1� x2Þ_xþ a1xþ b1x3 þ d1x5 ¼ f 1 coso1t (9)

€xþ l_xþ a2xþ b2x3 þ d2x5 ¼ f 2 coso2t (10)

The dynamics, control and synchronization of Eqs. (6)–(10), under different excitations and couplings have been
extensively studied for the Van der Pol oscillator (6) [30–33] (and references therein), the Duffing–Van der Pol oscillator (7)
[13,23,24,34–40] (and references therein), and the Duffing oscillator (8) [41–43] (and references therein), but have not been
extensively studied for the F6 Van der Pol oscillator (9) and F6 Duffing oscillator (10). A few studies on the F6 Van der Pol
oscillator with external excitation (9) are found in [26] where the authors used adaptive feedback approach to synchronize
two identical F6 Van der Pol oscillators and applied to secure communications, [27] where the authors established the
condition for homoclinic bifurcation and fractal basin boundaries, [44] where the authors derived conditions for chaotic
motion and fractal basin boundaries in the presence of bounded noise and established threshold of bounded noise
amplitude for onset of chaos, and [45] where the authors used F6 Van der Pol and F6 Duffing oscillators to illustrate the
effectiveness of a novel feedback control scheme with an uncertainty estimator. While a few studies on the F6 Duffing
oscillator with external excitation (10) are found in [28] where the authors applied linear feedback and parametric control
approaches and established conditions for inhibition of chaotic escape, and [29] where the authors derived the criteria for
the occurrence of fractal basin boundaries for homoclinic and heteroclinic orbits (for both single and triple wells) and
obtained harmonic, subharmonic and superharmonic oscillatory states.

A few studies have also been done on the parametrically and externally excited F6 Van der Pol oscillator (F6-VDPO) [46]
and parametrically excited F6 Duffing oscillator (F6-DO) [47]. Most of the studies on F6 chaotic oscillators, so far, are on
analysis of the dynamics of the systems. Studies on their control and synchronization are limited [26,28,45].

In general, the dynamics of the Van der Pol oscillator models include the exhibition of strange attractors, Hopf and
Neimark–Sacker bifurcations, Smale horseshoe chaos, multi-stability, homoclinic and heteroclinic bifurcations, fractal
basin boundaries [26,28,30,31,33–36]. The dynamics of the Duffing oscillator models include hysteresis, multi-stability,
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Fig. 1. The F6 potential for parameter values (a) a ¼ 1:0; b ¼ �0:7; d ¼ 0:1 (triple-well), (b) a ¼ 0:46; b ¼ 1:0; d ¼ 0:1 (single-well).
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Fig. 2. Phase portrait of the chaotic attractor for the externally excited F6 Van der Pol oscillator with parameter values: (a) m ¼ 0:4; a1 ¼ 1:0;

b1 ¼ �0:7; d1 ¼ 0:1; f 1 ¼ 9; w1 ¼ 3:14 (triple-well), (b) m ¼ 0:4; a1 ¼ 0:46; b1 ¼ 1:0; d1 ¼ 0:1; f 1 ¼ 4:5; w1 ¼ 0:86 (single-well).
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period-doubling bifurcation, intermittent transitions to chaos, fractal basin boundaries [28] (and references therein). In
general, the systems with F6 potential have more complex dynamics than those with F4 and F2 potentials [27–29]. We,
hereby, investigate the synchronization behaviour of the F6-VDPO (9) and F6-DO (10) in the triple-well configuration of
the F6 potential. In the literature, use has been made of the F6 potential parameter values sets (a ¼ 1;
b ¼ �0:7 or � 0:5;d ¼ 0:1 or 0:05) [27,28] and (a ¼ 0:46;b ¼ 1:0; d ¼ 0:1) [26,45] which give the potential configurations
in Figs. 1(a) and (b) respectively. The F6-VDPO (9) has been shown to exhibit chaotic dynamics for the parameter
values sets (m ¼ 0:4;a1 ¼ 1:0;b1 ¼ �0:7; d1 ¼ 0:1;o1 ¼ 3:14; f 1 ¼ 9) and (m ¼ 0:4;a1 ¼ 0:46;b1 ¼ 1:0; d1 ¼ 0:1;o1 ¼ 86;
f 1 ¼ 4:5) [26,27] as shown in the phase space chaotic attractors in Figs. 2(a) and (b) respectively, which correspond to the
potential configurations in Figs. 1(a) and (b) respectively. Whereas the F6-DO (10) exhibits chaotic dynamics for the
parameter values sets (l ¼ 0:1;a2 ¼ 1:0;b2 ¼ �0:5; d1 ¼ 0:05;o2 ¼ 0:5; f 2 ¼ 0:3) and (l ¼ 0:4;a2 ¼ 0:46;b2 ¼ 1:0;
d2 ¼ 0:1;o2 ¼ 86; f 2 ¼ 4:5) [28,45] as shown in the phase space chaotic attractors in Figs. 3(a) and (b) respectively,
which again correspond to the potential configurations in Figs. 1(a) and (b) respectively.
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3. Synchronization of F6 Van der Pol oscillators

3.1. Formulation of the active controllers

Eq. (9) can be written as

_x1 ¼ x2

_x2 ¼ mð1� x2
1Þx2 � a1x1 � b1x3

1 � d1x5
1 þ f 1 coso1t (11)

where x ¼ x1 and _x ¼ x2. Let system (11) be the drive system and system (12) be the response system:

_y1 ¼ y2 þ u1ðtÞ

_y2 ¼ mð1� y2
1Þy2 � a1y1 � b1y3

1 � d1y5
1 þ f 1 coso1t þ u2ðtÞ (12)

where u1ðtÞ and u2ðtÞ are control functions to be determined. Subtracting (11) from (12) and using the notations
e1 ¼ y1 � x1 and e2 ¼ y2 � x2 we have

_e1 ¼ e2 þ u1ðtÞ

_e2 ¼ me2 � mðy2
1y2 � x2

1x2Þ � a1e1 � b1ðy
3
1 � x3

1Þ � d1ðy
5
1 � x5

1Þ þ u2ðtÞ (13)

We now re-define the control functions such as to eliminate terms in (13) which cannot be expressed as linear terms in
e1ðtÞ and e2ðtÞ as follows:

u1ðtÞ ¼ v1ðtÞ

u2ðtÞ ¼ mðy2
1y2 � x2

1x2Þ þ b1ðy
3
1 � x3

1Þ þ d1ðy
5
1 � x5

1Þ þ v2ðtÞ (14)

Substituting (14) into (13) we have

_e1 ¼ e2 þ v1ðtÞ

_e2 ¼ me2 � a1e1 þ v2ðtÞ (15)

Eq. (15) is the error dynamics, which can be interpreted as a control problem where the system to be controlled is a linear
system with control inputs v1ðtÞ ¼ v1ðe1ðtÞ; e2ðtÞÞ and v2ðtÞ ¼ v2ðe1ðtÞ; e2ðtÞÞ. As long as these feedbacks stabilize the system,
jeiðtÞ;i¼1;2j ! 0 as t!1. This implies that the two systems (11) and (12) evolving from different initial conditions are
synchronized. As functions of e1ðtÞ and e2ðtÞ we choose v1ðtÞ and v2ðtÞ as follows:

v1ðtÞ

v2ðtÞ

 !
¼ D

e1

e2

 !
(16)

where D ¼ ðac
b
dÞ is a 2� 2 constant feedback matrix to be determined. Hence the error system (15) can be written as

_e1ðtÞ

_e2ðtÞ

 !
¼ C

e1ðtÞ

e2ðtÞ

 !
(17)

where C ¼ ð a
c�a

1þb
mþdÞ is the coefficient matrix. According to the Lyapunov stability theory and the Routh–Hurwitz criteria, if

aþ dþ mo0

ðc � a1Þð1þ bÞ � aðmþ dÞo0 (18)

then the eigenvalues of the coefficient matrix of error system (15) must be real negative or complex with negative real parts
and, hence, stable synchronized dynamics between systems (11) and (12) is guaranteed. Let

aþ dþ m ¼ �E

ðc � a1Þð1þ bÞ � aðmþ dÞ ¼ �E (19)

where E40 is a real number which is usually set equal to 1. There are several ways of choosing the constant elements
a; b; c; d of matrix D in order to satisfy (18). We optimize the way this choice is made so that not only the synchronization
time is short (see Section 4.2) but also the controller complexity is reduced. This can be achieved by letting a ¼ b ¼ 0 in (19)
to obtain the matrix

D ¼
0 0

a1 � E �m� E

 !
(20)
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which satisfies (18) and gives u1ðtÞ ¼ 0, thereby, leading to a single active control function u2ðtÞ as follows:

u2ðtÞ ¼ mðy2
1y2 � x2

1x2Þ þ b1ðy
3
1 � x3

1Þ þ d1ðy
5
1 � x5

1Þ þ ða1 � EÞe1 � ðmþ EÞe2 (21)

3.2. Numerical simulation

Using the fourth-order Runge–Kutta algorithm with initial conditions ðx1; x2Þ ¼ ð0:1;0:2Þ, ðy1; y2Þ ¼ ð2:2;0:05Þ, a time
step of 0.001, E ¼ 1 (note, however, that E ¼ 3:5 leads to optimally short synchronization time as explained in Section 4.2),
and parameter values as in Fig. 2(a) to ensure chaotic dynamics of the state variables, systems (11) and (12), with the
controller as defined in (21), were numerically solved. The results obtained show that the error states oscillate chaotically
when the controller is switch off, and when the controller is switched on at t ¼ 100, Fig. 4, the error states converge to zero,
thereby, guaranteeing synchronization between systems (11) and (12). This is also confirmed by the synchronization
quality e defined as

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

1 þ e2
2

q
(22)

4. Synchronization of F6 Duffing oscillators

4.1. Formulation of the active controllers

Eq. (10) can be written as

_x1 ¼ x2

_x2 ¼ �lx2 � a2x1 � b2x3
1 � d2x5

1 þ f 2 coso2t (23)
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where x ¼ x1 and _x ¼ x2. Let system (23) be the drive system and system (24) be the response system.

_y1 ¼ y2 þ u1ðtÞ

_y2 ¼ �ly2 � a2y1 � b2y3
1 � d2y5

1 þ f 2 coso2t þ u2ðtÞ (24)

where u1ðtÞ and u2ðtÞ are control function to be determined. Subtracting (23) from (24) and using the notations
e1 ¼ y1 � x1 and e2 ¼ y2 � x2 we have the error dynamics

_e1 ¼ e2 þ u1ðtÞ

_e2 ¼ �le2 � a2e1 � b2ðy
3
1 � x3

1Þ � d2ðy
5
1 � x5

1Þ þ u2ðtÞ (25)

We now re-define the control functions such as to eliminate terms in (25) which cannot be expressed as linear terms in
e1ðtÞ and e2ðtÞ as follows:

u1ðtÞ ¼ v1ðtÞ

u2ðtÞ ¼ b2ðy
3
1 � x3

1Þ þ d2ðy
5
1 � x5

1Þ þ v2ðtÞ (26)

Substituting (26) into (25) we have

_e1 ¼ e2 þ v1ðtÞ

_e2 ¼ �le2 � a2e1 þ v2ðtÞ (27)

Eq. (27) corresponds to (15) for the F6 Van der Pol oscillator. Following the same procedure from (15) to (17) in Section 3.1
we obtain the coefficient matrix C as

C ¼
a 1þ b

c � a2 d� l

 !
(28)

According to the Lyapunov stability theory and the Routh–Hurwitz criteria, if

aþ d� lo0

ðc � a2Þð1þ bÞ � aðd� lÞo0 (29)

then the eigenvalues of the coefficient matrix of error system (27) must be real negative or complex with negative real
parts and, hence, stable synchronized dynamics between systems (23) and (24) is guaranteed. Let

aþ d� l ¼ �E

ðc � a2Þð1þ bÞ � aðd� lÞ ¼ �E (30)

where E40 is a real number as earlier explained. From (30) we again choose a ¼ b ¼ 0 for the same reason as Section 3.1 to
obtain D as

D ¼
0 0

a2 � E l� E

 !
(31)

which satisfies (29) and gives u1ðtÞ ¼ 0, thereby, leading to a single active control function u2ðtÞ as follows:

u2ðtÞ ¼ b2ðy
3
1 � x3

1Þ þ d2ðy
5
1 � x5

1Þ þ ða2 � EÞe1 þ ðl� EÞe2 (32)

4.2. Numerical simulation

Using the fourth-order Runge–Kutta algorithm with initial conditions (x1; x2) ¼ (0;1:5), (y1; y2) ¼ (0.5,1.0), a time step
of 0.002, E ¼ 1 (note, however, that E ¼ 4 leads to optimally short synchronization time as explained below), and parameter
values as in Fig. 3(a) to ensure chaotic dynamics of the state variables, system (23) and (24), with the controller as defined
in (32), were numerically solved. The results obtained show that the error states oscillate chaotically when the controller is
switched off, and when the controller is switched on at t ¼ 100, Fig. 5, the error states converge to zero, thereby,
guaranteeing synchronization between systems (23) and (24). This is also confirmed by the synchronization quality e

defined in (22).
The effect of the parameter E on the synchronization process was investigated by calculating the synchronization time

ts, which is defined as the time taken by the synchronization quality (22) to decrease to 10�6 [33], for different values of E.
The relation between E and ts is shown in Fig. 6 for the cases of the F6-VDPO and F6-DO with the controllers of Eqs. (21)
and (32). Clearly the synchronization time decreases as E increases to a near constant value. It is also observed from the
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computation that ts is optimally short for certain values of E, e.g. E ¼ 3:5 and 4 for the F6-VDPO and F6-DO with the
controllers of Eqs. (21) and (32) respectively.

5. Synchronization between F6 Van der Pol and F6 Duffing oscillators

5.1. Formulation of the active controller

Here we choose the F6 Van der Pol oscillator (11) as the drive system and the F6 Duffing oscillator (24) as the response
system. To achieve synchronization between these two systems we proceed as in Sections 3.1 and 4.1, that is, we subtract
(11) from (24) and apply the relation.

y1 ¼ x1 þ e1 and y2 ¼ x2 þ e2 (33)

to obtain the error dynamics

_e1 ¼ e2 þ u1ðtÞ

_e2 ¼ � le2 � ðlþ mÞx2 þ mx2
1x2 þ ða1 � a2Þx1 � a2e1 � b2y3

1 � b1x3
1

� d2y5
1 þ d1x5

1 þ f 2 coso2t � f 1 coso1t þ u2ðtÞ (34)

We again re-define the control functions such as to eliminate terms in (34) which cannot be expressed as linear terms in
e1ðtÞ and e2ðtÞ as follows:

u1ðtÞ ¼ v1ðtÞ

u2ðtÞ ¼ ðlþ mÞx2 � mx2
1x2 � ða1 � a2Þx1 þ b2y3

1 � b1x3
1 þ d2y5

1 � d1x5
1 � f 2 coso2t þ f 1 coso1t þ v2ðtÞ (35)
0

2

4

6

8

0 50 100 150 200
time

-9

-6

-3

0

3

6
-7.5

-5

-2.5

0

2.5

5

7.5

e
e 2

e 1

Fig. 7. Error dynamics between F6 Van der Pol and Duffing oscillators with the controller deactivated for 0oto100 and activated for t � 100.
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Substituting (35) into (34) we obtain the error dynamics as

_e1 ¼ e2 þ v1ðtÞ

_e2 ¼ �le2 � a2e1 þ v2ðtÞ (36)

Again, following the same procedure from (15) to (17) in Section 3.1 we obtain the coefficient matrix C as

D ¼
0 0

a2 � E l� E

 !
(37)

which gives u1ðtÞ ¼ 0 and, hence, leads to a single active control function u2ðtÞ as

u2ðtÞ ¼ ðlþ mÞx2 � mx2
1x2 � ða1 � a2Þx1 þ b2y3

1 � b1x3
1 þ d2y5

1 � d1x5
1

� f 2 coso2t þ f 1 coso1t þ ða2 � EÞe1 þ ðl� EÞe2 (38)

5.2. Numerical simulations

Using the fourth-order Runge–Kutta algorithm with initial conditions (x1; x2) ¼ (0:1;0:2), (y1; y2) ¼ (0,1.5), a time step
of 0.001, E ¼ 1, and parameter values as in Figs. 2(a) and 3(a) to ensure chaotic dynamics of the state variables, systems (11)
and (24), with the controller as defined in (38), were numerically solved. The results obtained show that the error states
oscillate chaotically when the controller is switched off, and when the controller is switched on at t ¼ 100, Fig. 7, the error
states converge to zero, thereby, guaranteeing synchronization between systems (11) and (24). Therefore the F6 Duffing
oscillator (24) tracks the F6 Van der Pol oscillator (11). This is also confirmed by the synchronization quality e defined in
(22). Here again a rough calculation revealed that the relation between the synchronization time and E follows the pattern
shown in Fig. 6.

6. Conclusion

In this paper the active control technique based on the Lyapunov stability theory and the Routh–Hurwitz criteria has
been used to design control functions for the synchronization of 2-D chaotic systems in such a way that the number of
control functions decreased from two to one. As examples of 2-D systems we chose the recently introduced F6 Van der Pol
and F6 Duffing oscillators with triple-well potential, which exhibit highly complex dynamics and whose synchronization
behaviour has not been well investigated. Single control functions were designed for the purpose of achieving complete
synchronization between two identical F6 Van der Pol oscillators, two identical F6 Duffing oscillators, and between two
non-identical F6 chaotic oscillators comprising the Van der Pol and Duffing oscillators. The results of the numerical
simulations carried out to verify the effectiveness of the designed controllers showed that the single control functions are
quite effective in enabling the variables of the response system to completely synchronize with those of the drive system in
both the identical and non-identical cases. A parameter E that can be tuned to optimize the synchronization time was also
introduced in the design. The single controller design significantly reduced the complexity and hence the cost of the
controller, thereby, making it suitable for practical implementation. The synchronization of complex chaotic systems using
simple controllers has potential application in secure communications.
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